Ms-dos и tasm 2.0. часть 10. команды ассемблера

Стейтменты

В ассемблере есть три вида стейтментов:

   Выполняемые инструкции (или просто «инструкции»), которые сообщают процессору, что нужно делать. Каждая инструкция хранит в себе код операции (или ещё «опкод») и генерирует одну инструкцию на машинном языке.

   Директивы ассемблера, которые сообщают программе об аспектах компиляции. Они не генерируют инструкции на машинном языке.

   Макросы, которые являются простым механизмом вставки кода.

В ассемблере на одну строку приходится один стейтмент, который должен соответствовать следующему формату:

mnemonic

1 меткаmnemonicоперанды;комментарий

Базовая инструкция состоит из названия инструкции () и операндов (они же «параметры»). Вот примеры типичных стейтментов ассемблера:

INC COUNT ; выполняем инкремент переменной памяти COUNT

MOV TOTAL, 48 ; перемещаем значение 48 в переменную памяти TOTAL

ADD AH, BH ; добавляем содержимое регистра BH к регистру AH

AND MASK1, 128 ; выполняем операцию AND с переменной MASK1 и 128

ADD MARKS, 10 ; добавляем 10 к переменной MARKS
MOV AL, 10 ; перемещаем значение 10 в регистр AL

1
2
3
4
5
6
7
8
9
10

INC COUNT;выполняеминкрементпеременнойпамятиCOUNT

MOV TOTAL,48;перемещаемзначение48впеременнуюпамятиTOTAL

ADD AH,BH;добавляемсодержимоерегистраBHкрегиструAH

ANDMASK1,128;выполняемоперациюANDспеременнойMASK1и128

ADD MARKS,10;добавляем10кпеременнойMARKS

MOV AL,10;перемещаемзначение10врегистрAL

Саундтреки

Из фильма В центре вниманияИз фильма Ван ХельсингИз сериала Дневники ВампираИз фильма Скауты против зомбииз фильмов ‘Миссия невыполнима’Из фильма Голодные игры: Сойка-пересмешница. Часть 2OST ‘Свет в океане’OST «Большой и добрый великан»из фильма ‘Новогодний корпоратив’из фильма ‘Список Шиндлера’ OST ‘Перевозчик’Из фильма Книга джунглейиз сериала ‘Метод’Из фильма ТелохранительИз сериала Изменыиз фильма Мистериум. Тьма в бутылкеиз фильма ‘Пассажиры’из фильма ТишинаИз сериала Кухня. 6 сезониз фильма ‘Расплата’ Из фильма Человек-муравейиз фильма ПриглашениеИз фильма Бегущий в лабиринте 2из фильма ‘Молот’из фильма ‘Инкарнация’Из фильма Савва. Сердце воинаИз сериала Легко ли быть молодымиз сериала ‘Ольга’Из сериала Хроники ШаннарыИз фильма Самый лучший деньИз фильма Соседи. На тропе войныМузыка из сериала «Остров»Из фильма ЙоганутыеИз фильма ПреступникИз сериала СверхестественноеИз сериала Сладкая жизньИз фильма Голограмма для короляИз фильма Первый мститель: ПротивостояниеИз фильма КостиИз фильма Любовь не по размеруOST ‘Глубоководный горизонт’Из фильма Перепискаиз фильма ‘Призрачная красота’Место встречи изменить нельзяOST «Гений»из фильма ‘Красотка’Из фильма Алиса в ЗазеркальеИз фильма 1+1 (Неприкасаемые)Из фильма До встречи с тобойиз фильма ‘Скрытые фигуры’из фильма Призывиз сериала ‘Мир Дикого Запада’из игр серии ‘Bioshock’ Музыка из аниме «Темный дворецкий»из фильма ‘Американская пастораль’Из фильма Тарзан. ЛегендаИз фильма Красавица и чудовище ‘Искусственный интеллект. Доступ неограничен»Люди в черном 3’из фильма ‘Планетариум’Из фильма ПрогулкаИз сериала ЧужестранкаИз сериала Элементарноиз сериала ‘Обратная сторона Луны’Из фильма ВаркрафтИз фильма Громче, чем бомбыиз мультфильма ‘Зверопой’Из фильма БруклинИз фильма Игра на понижениеИз фильма Зачарованнаяиз фильма РазрушениеOST «Полный расколбас»OST «Свободный штат Джонса»OST И гаснет светИз сериала СолдатыИз сериала Крыша мираИз фильма Неоновый демонИз фильма Москва никогда не спитИз фильма Джейн берет ружьеИз фильма Стражи галактикииз фильма ‘Sos, дед мороз или все сбудется’OST ‘Дом странных детей Мисс Перегрин’Из игры Contact WarsИз Фильма АмелиИз фильма Иллюзия обмана 2OST Ледниковый период 5: Столкновение неизбежноИз фильма Из тьмыИз фильма Колония Дигнидадиз фильма ‘Страна чудес’Музыка из сериала ‘Цвет черёмухи’Из фильма Образцовый самец 2из фильмов про Гарри Поттера Из фильма Дивергент, глава 3: За стеной из мультфильма ‘Монстр в Париже’из мультфильма ‘Аисты’Из фильма КоробкаИз фильма СомнияИз сериала Ходячие мертвецыИз фильма ВыборИз сериала Королек — птичка певчаяДень независимости 2: ВозрождениеИз сериала Великолепный векиз фильма ‘Полтора шпиона’из фильма Светская жизньИз сериала Острые козырьки

Знакомимся с сегментными регистрами

Для начала разберемся, что такое сегментные регистры. Процессор 8088 умеет адресовать один мегабайт оперативной памяти, несмотря на то что регистры у него 16-битные. В норме 16 битами можно адресовать только 64 Кбайт. И как же тогда выкручивается 8088? Как ему удается адресовать целый мегабайт? Для этого в 8088 есть сегментные регистры! Четыре сегментных регистра: , , и , по 16 бит каждый. У каждого из этих регистров есть свое назначение.

Регистр указывает на сегмент кода. Процессор обращается к всякий раз, когда надо считать из памяти очередную инструкцию для выполнения.

Регистры и указывают на сегмент данных. К этим регистрам процессор обращается, когда выполняемая инструкция считывает или сохраняет данные. Имей в виду: используется чаще, чем . обычно вступает в игру, когда ты обрабатываешь массивы данных, индексируя их регистром .

Регистр указывает на сегмент стека. К этому регистру процессор обращается, когда выполняет инструкции, взаимодействующие со стеком: , , и .

Значения, хранимые в сегментных регистрах, — это базовый адрес, поделенный на . Если в записано значение , процессор будет считывать инструкции из области памяти . Если в регистре записано значение , то процессор будет считывать инструкции из области памяти .

Если тебе надо адресоваться в какой-то другой сегмент, а не тот, который будет задействован по умолчанию, напиши этот сегмент в префиксе к инструкции, которую используешь.

Поместить какое-то число в сегментные регистры напрямую нельзя. Для этого надо:

  • либо сначала записать число в какой-нибудь регистр и уже этот регистр присвоить сегментному регистру;
  • либо воспользоваться парой инструкций ;
  • либо воспользоваться инструкциями .

Процессор 8088 настолько лоялен, что позволит тебе даже вот такую инструкцию: . Но только имей в виду, что это нарушит поток выполнения инструкций. В более новых процессорах, начиная с 80286, такую диверсию сделать уже не получится. И слава богу!

Ну вот вроде бы и все, что тебе надо знать о сегментных регистрах. Теперь ты с их помощью (в основном с помощью регистров и ) можешь получать доступ ко всему первому мегабайту памяти ПК.

Литература и веб ресурсы

Beginners

  1. Абель П. Язык Ассемблера для IBM PC и программирования. – М.: Высшая школа, 1992. – 447 с.
  2. Брэдли Д. Программирование на языке ассемблера для персональной ЭВМ фирмы IBM.– М.: Радио и связь, 1988. – 448 с.
  3. Галисеев Г.В. Ассемблер IBM PC. Самоучитель.: – М.: Издательский дом «Вильямс», 2004. – 304 с.: ил.
  4. Дао Л. Программирование микропроцессора 8088. – М.: Мир, 1988. – 357 с.
  5. Жуков А.В., Авдюхин А.А. Ассемблер. – Спб.: БХВ-Петербург, 2003. – 448 с.: ил.
  6. Зубков С.В., Ассемблер для DOS, Windows и UNIX. – М.: ДМК Пресс, 2000. – 608 с.: ил. (Серия «Для программистов»).
  7. Ирвин К. Язык ассемблера для процессоров Intel, 4-е издание.: пер. с англ. – М.: Издательский дом «Вильямс», 2005. – 912 с.: ил. – Парал. тит. англ.(см. также свежее 7-ое издание в оригинале)
  8. Нортон П., Соухэ Д. Язык ассемблера для IBM PC.– М.: Компьютер, 1992.– 352 с.
  9. Пильщиков В.Н. Программирование на языке ассемблера IBM PC.– М.: ДИАЛОГ-МИФИ, 1994–2014 288 с.
  10. Скляров И.С. Изучаем ассемблер за 7 дней www.sklyaroff.ru

Advanced

  1. Касперски К. Фундаментальные основы хакерства. Искусство дизассемблирования. – М.: СОЛОН-Пресс, 2004. 448 с. – (Серия «Кодокопатель»)
  2. Касперски К. Техника отладки программ без исходных текстов. – Спб.: БХВ-Петербург, 2005. – 832 с.: ил.
  3. Касперски К. Компьютерные вирусы изнутри и снаружи. – Спб.: Питер, 2006. – 527 с.: ил.
  4. Касперски К. Записки исследователя компьютерных вирусов. – Спб.: Питер, 2006. – 316 с.: ил.
  5. Кнут Д. Искусство программирования, том 3. Сортировка и поиск, 2-е изд.: пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 832 с.: ил. – Парал. тит. англ.
  6. Колисниченко Д.Н. Rootkits под Windows. Теория и практика программирования «шапок-невидимок», позволяющих скрывать от системы данные, процессы, сетевые соединения. – Спб.: Наука и Техника, 2006. – 320 с.: ил.
  7. Лямин Л.В. Макроассемблер MASM.– М.: Радио и связь, 1994.– 320 с.: ил.
  8. Магда Ю. Ассемблер для процессоров Intel Pentium. – Спб.: Питер, 2006. – 410 с.: ил.
  9. Майко Г.В. Ассемблер для IBM PC.– М.: Бизнес-Информ, Сирин, 1997.– 212 с.
  10. Уоррен Г. Алгоритмические трюки для программистов, 2-е изд.: пер. с англ. – М.: Издательский дом «Вильямс», 2004. – 512 с.: ил. – Парал. тит. англ.
  11. Скляров И.С. Искуство защиты и взлома информации. – Спб.: БХВ-Петербург, 2004. – 288 с.: ил.
  12. Уэзерелл Ч. Этюды для программистов: Пер. с англ. – М.: Мир, 1982. – 288 с., ил.
  13. Электронная библиотека братьев Фроловых www.frolov-lib.ru
  14. Чекатов А.А. Использование Turbo Assembler при разработке программ.– Киев: Диалектика, 1995.– 288 с.
  15. Юров В. Assembler: специальный справочник.– Спб.: Питер, 2001.– 496 с.: ил.
  16. Юров В. Assembler. Практикум. 2-е изд. – Спб.: Питер, 2006. – 399 с.: ил.
  17. Юров В. Assembler. Учебник для вузов. 2-е изд. – Спб.: Питер, 2007. – 637 с.: ил.
  18. Пирогов В. Assembler учебный курс. 2001 Нолидж
  19. Пирогов В. АССЕМБЛЕР учебный курс 2003 Нолидж-БХВ
  20. Пирогов В. Assembler для windows 
    1-ое издание ― М.: изд-во Молгачева С.В., 2002 
    2-ое издание ― СПб.:. БХВ-Петербург, 2003 ― 684 с.: ил. 
    3-ье издание ― СПб.:. БХВ-Петербург, 2005 ― 864 с.: ил. 
    4-ое издание ― СПб.:. БХВ-Петербург, 2012 ― 896 с.: ил.
  21. Пирогов В. Ассемблер на примерах. ― СПб.:. БХВ-Петербург, 2012 ― 416 с.: ил.
  22. Пирогов В. АССЕМБЛЕР и дизассемблирование. ― СПб.:. БХВ-Петербург, 2006. ― 464 с.: ил.
  23. Пирогов В. работа над книгой ’64-битовое программирование на ассемблере (Windows,Unix)’. В книге рассматривается программирование на fasm в 64-разрядных Windows и Unix
  24. Юров В., Хорошенко С. Assembler: учебный курс.– Спб.: Питер, 1999. – 672 с.
  25. Ю-Чжен Лю, Гибсон Г. Микропроцессоры семейства 8086/8088. Архитектура, программирование и проектирование микрокомпьютерных систем.– М.: Радио и связь, 1987.– 512 с.
  26. Agner Fog: Software optimization resources (assembly/c++) 1996 – 2017. Веб-страница
  27. Intel 64 and IA-32 Architectures Optimization Reference Manual
  28. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture
  29. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M
  30. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2B: Instruction Set Reference, N-Z
  31. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1
  32. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System Programming Guide, Part 2
  33. Leiterman J.C. 32/64-BIT 80×86 Assembly Language Architecture. 2005, Wordware Publishing, Inc (568 pages) 2320 Los Rios Boulevard Plano, Texas 75074
  34. Turbo Assembler Version 3.2 User’s Guide Borland International. Inc 1800 Green Hills Road P.O. BOX 660001, Scotts Valley, CA 95067-0001
  35. Статьи с сайта wasm.in
  36. Статьи с сайта sasm.narod.ru
  37. Сайт MASM32 и форум
  38. Сайт FASM и форум
  39. Сайт NASM

Реверс-инжиниринг электрокарниза AM82TV

Из песочницы

Есть у меня пара электрокарнизов компании Akko — AM82TV. Модель эта выделяется из собратьев наиболее полным набором интерфейсов управления. Шторами можно управлять по радиоканалу, есть “сухие контакты”, пофазное управление (замыканием управляющих проводов с сетевыми). Есть интерфейс RS485 — это, если захочется подключить шторы к “умному дому”. Можно также открыть/закрыть шторы просто дернув их рукой в нужном направлении. “Из коробки” не хватает, пожалуй, только web-интерфейса, ну и MQTT.
Электрокарнизы у меня уже давно, работают надежно, но время от времени стало появляться желание их разобрать — из любопытства посмотреть что внутри и есть ли возможность засунуть туда ESP8266 (или ESP32) с тем, чтобы добавить недостающее. Можно, конечно, подключить всё снаружи, но лучше если внешний вид останется прежним и всё будет спрятано внутри.
Не чини того, что не сломано — это не про меня. Поначалу я пытался гнать от себя дурные идеи, но со временем зуд усиливался и вот, настал момент, когда с ним уже было невозможно бороться. Я снял мотор с электрокарниза и разобрал его. Начальный осмотр должен был дать ответы на два вопроса: есть ли место для ESP8266 и можно ли использовать встроенный источник питания. Разобралось все просто. Достаточно открутить несколько винтов с торцов мотора. Единственно — шлицы винтов сделаны не под отвертку, а под шестигранный ключ torx. После этого можно извлечь содержимое — коллекторный мотор в одном корпусе с редуктором и датчиком вала двигателя, блок питания на 24 вольта и плату управления.

Ускоряем на 70% игру на процессоре в 1 МГц

Перевод

Давным-давно, во времена студенчества в колледже я немного занимался разработкой компьютерных видеоигр. Это была эпоха 8-битных PC, когда игровое оборудование по современным стандартам было почти невозможно медленным.
Поэтому вас не должно удивлять, что программисты игр придумывали всевозможные безумные трюки, чтобы их игры работали с приемлемой скоростью. Безумные, безумные трюки.
Это история об одном из таких трюков.
Я постараюсь припомнить все важные подробности, однако в чём-то могу ошибиться. Если так случится, простите меня, это было очень давно.

Исходные данные

Мой друг, одарённый программист, почти закончил свою новую игру. Каким-то образом ему удалось почти без изменений уместить в компьютер эпохи 1980-х довольно впечатляющую графически на то время игру, популярную на аркадных автоматах.
Единственная проблема заключалась в том, что его версия игры оказалась неиграбельной. Она работала слишком медленно, а дёрганые движения мешали вовлечённости игрока, ведь игра была сайд-скроллером.
Мой друг, работавший над игрой параллельно с учёбой в колледже, начал уже ощущать себя немного вымотанным. Опасаясь, что мог упустить какую-нибудь простую оптимизацию, он попросил посмотреть код меня.
Я посмотрел. Но там нельзя было найти никакой простой оптимизации.

Отладка игр для NES: как она происходит сегодня

Перевод

Если вы когда-нибудь занимались программированием, то знакомы с концепцией багов. Если бы они нам не досаждали, процесс разработки стал бы намного быстрее и приятней. Но эти баги просто ждут момента, чтобы испортить наш код, рабочий график и творческий поток. К счастью, существует множество инструментов и стратегий для уничтожения багов даже в коде программистов ретро-игр.

Инструменты отладки

Один из лучших способов отладки кода — использование отладчика. В некоторых версиях эмуляторов FCEUX и Mesen есть встроенный отладчик, позволяющий прерывать в любой момент времени выполнение программы для проверки работоспособности кода.Отладчик эмулятора FCEUX
Стоит заметить, что этот способ больше подходит для продвинутых программистов, работающих с языком ассемблера. Но мы новички, поэтому будем писать на языке C (cc65). Разумеется, компилятор станет играть по своим собственным правилам, и нам будет трудно разбираться с машинным кодом, скомпилированным из кода на C.

Почему следует изучать язык ассемблера?

В современной практике индустриального программирования языки ассемблера применяются крайне редко. Для разработки низкоуровневых программ практически в большинстве случаев используется язык си, позволяющий достигать тех же целей многократно меньшими затратами труда, причем с такой же, а иногда и большей эффективностью получаемого исполняемого кода (последнее достигается за счет применения оптимизаторов). На ассемблере сейчас реализуются очень специфические участки ядер операционных систем и системных библиотек. Более того, программирование на ассемблере было вытеснено и из такой традиционно ассемблерной области, как программирование микроконтроллеров. Большей частью прошивки для них также пишут на си. Тем не менее программирование на языке ассемблера очень часто применяется при написании программ, использующих возможности процессора, не реализуемые языками высокого уровня, а также при программировании всевозможных нестандартных программистских хитростей. Отдельные ассемблерные модули, как и ассемблерные вставки в текст на других языках, присутствуют и в ядрах операционных систем, и в системных библиотеках того же языка си и других языков высокого уровня. Сегодня едва ли кому придет в голову сумасшедшая мысль писать крупную программу на чистом ассемблере.

Так зачем же тратить время на его изучение? По ряду веских причин, и вот одна из них: ассемблер — это краеугольный камень, на котором покоится все бесконечное пространство программирования, начиная от рождения первого процессора. Каждый физик мечтает разгадать тайну строения вселенной, найти эти загадочные первичные неделимые (низкоуровневые) элементы, из которых она состоит, не удовлетворяясь лишь смутным о том представлением квантовой теории. Ассемблер же и есть та первичная материя, из которой состоит вселенная процессора. Он — тот инструмент, который дает человеку способность мыслить в терминах машинных команд. А подобное умение просто необходимо любому профессиональному программисту, даже если никогда в жизни он не напишет ни единой ассемблерной строчки. Нельзя отрицать того, что невозможно стать математиком, совершенно не имея понятия об элементарной арифметике. На каком бы языке вы ни писали программы, необходимо хотя бы в общих чертах понимать, что конкретно будет делать процессор, исполняя ваше высочайшее повеление. Если такого понимания нет, программист начинает бездумно применять все доступные операции, совершенно не ведая, что на самом деле он творит.

Вообще, профессиональный пользователь компьютера, системный ли администратор, или программист, может позволить себе что-то не знать, но ни в коем случае не может позволить не понимать сути происходящего, как устроена вычислительная система на всех ее уровнях, от электронных логических схем до громоздких прикладных программ. А непонимание чего-то влечет за собой ощущение в глубине подсознания некоей загадочности, непостижимого таинства, происходящего по мановению чьей-то волшебной палочки. Такое ощущение для профессионала недопустимо категорически. Он просто обязан быть уверен вплоть до глубинных слоев подсознания, что то устройство, с которым он имеет дело, ничего волшебного и непознаваемого собой не представляет.

Иными словами, до тех пор пока существуют процессоры, ассемблер будет необходим.

В этом отношении совершенно не важно, какую конкретно архитектуру и язык какого конкретного ассемблера изучать. Зная один язык ассемблера, ты с успехом можешь начать писать на любом другом, потратив лишь некоторое время на изучение справочной информации

Но самое главное в том, что, умея мыслить языком процессора, ты всегда будешь знать, что, для чего, почему и зачем происходит. А это уже не просто уровень программирования мышкой, а путь к созданию программного обеспечения, несущего печать великого мастерства.

Прыжок с условием

Если в условном прыжке выполняется указанное условие, то точка выполнения программы переносится в указанную инструкцию. Существует множество инструкций условного прыжка в зависимости от условия и данных.

Ниже приведены инструкции условного прыжка, используемые для данных со знаком в арифметических операциях:

Инструкция Описание Тестируемые флаги
JEJZ Jump Equal (равно) или Jump Zero (ноль) ZF
JNE/JNZ Jump Not Equal (не равно) или Jump Not Zero (не ноль) ZF
JG/JNLE Jump Greater (больше) или Jump Not Less/Equal (не меньше/равно) OF, SF, ZF
JGE/JNL Jump Greater/Equal (больше/равно) или Jump Not Less (не меньше) OF, SF
JL/JNGE Jump Less (меньше) или Jump Not Greater/Equal (не больше/равно) OF, SF
JLE/JNG Jump Less/Equal (меньше/равно) или Jump Not Greater (не больше) OF, SF, ZF

В следующей таблице приведены инструкции условного прыжка, используемые для данных без знака в логических операциях:

Инструкция Описание Тестируемые флаги
JE/JZ Jump Equal (равно) или Jump Zero (ноль) ZF
JNE/JNZ Jump Not Equal (не равно) или Jump Not Zero (не ноль) ZF
JA/JNBE Jump Above (больше) или Jump Not Below/Equal (не меньше/равно) CF, ZF
JAE/JNB Jump Above/Equal (больше/равно) или Jump Not Below (не меньше) CF
JB/JNAE Jump Below (меньше) или Jump Not Above/Equal (не больше/равно) CF
JBE/JNA Jump Below/Equal (меньше/равно) или Jump Not Above (не больше) AF, CF

Следующие инструкции условного прыжка имеют специальное использование и проверяют значение флагов:

Инструкция Описание Тестируемые флаги
JCXZ Jump если CX равно Zero none
JC Jump если Carry (перенос) CF
JNC Jump если No Carry (нет переноса) CF
JO Jump если Overflow (переполнение) OF
JNO Jump если No Overflow (нет переполнения) OF
JP/JPE Jump Parity или Jump Parity Even (если чётность) PF
JNP/JPO Jump No Parity или Jump Parity Odd (если нечётность) PF
JS Jump Sign (отрицательное значение) SF
JNS Jump No Sign (положительное значение) SF

Пример синтаксиса набора инструкций типа :

CMP AL, BL
JE EQUAL
CMP AL, BH
JE EQUAL
CMP AL, CL
JE EQUAL
NON_EQUAL: …
EQUAL: …

1
2
3
4
5
6
7
8

CMP AL,BL

JE EQUAL

CMP AL,BH

JE EQUAL

CMP AL,CL

JE EQUAL

NON_EQUAL…

EQUAL…

В качестве примера, рассмотрим следующую программу, которая определяет и выводит на экран наибольшую из трёх целочисленных переменных:

section .text
global _start ; должно быть объявлено для использования gcc

_start: ; сообщаем линкеру входную точку
mov ecx,
cmp ecx,
jg check_third_num
mov ecx,

check_third_num:

cmp ecx,
jg _exit
mov ecx,

_exit:

mov , ecx
mov ecx,msg
mov edx, len
mov ebx,1 ; файловый дескриптор (stdout)
mov eax,4 ; номер системного вызова (sys_write)
int 0x80 ; вызов ядра

mov ecx,largest
mov edx, 2
mov ebx,1 ; файловый дескриптор (stdout)
mov eax,4 ; номер системного вызова (sys_write)
int 0x80 ; вызов ядра

mov eax, 1
int 80h

section .data

msg db «The largest digit is: «, 0xA,0xD
len equ $- msg
num1 dd ’47’
num2 dd ’22’
num3 dd ’31’

segment .bss
largest resb 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

section.text

global_start;должнобытьобъявленодляиспользованияgcc

_start;сообщаемлинкерувходнуюточку

mov   ecx,num1

cmp   ecx,num2

jg    check_third_num

mov   ecx,num2

check_third_num

cmp   ecx,num3

jg    _exit

mov   ecx,num3

_exit

movlargest,ecx

mov   ecx,msg

mov   edx,len

mov   ebx,1;файловыйдескриптор(stdout)

mov   eax,4;номерсистемноговызова(sys_write)

int0x80;вызовядра

mov   ecx,largest

mov   edx,2

mov   ebx,1;файловыйдескриптор(stdout)

mov   eax,4;номерсистемноговызова(sys_write)

int0x80;вызовядра

mov   eax,1

int80h

section.data

msg db»The largest digit is: «,0xA,0xD

len equ$-msg

num1 dd’47’

num2 dd’22’

num3 dd’31’

segment.bss

largest resb2

Результат выполнения программы выше:

Синтаксис

Синтаксис языка ассемблера определяется системой команд конкретного процессора.

Набор команд

  • Команды пересылки данных (mov, lea и т. д.)
  • Арифметичекие команды (add, sub, imul и т. д.)
  • Логические и побитовые операции (or, and, xor, shr и т. д.)
  • Команды управления ходом выполнения программы (jmp, loop, ret и т. д.)
  • cbne — перейти, если не равно
  • dbnz — декрементировать, и если результат ненулевой, то перейти
  • cfsneq — сравнить, и если не равно, пропустить следующую команду

Инструкции

Типичный формат записи команд:
<source lang=»asm»> опкод </source>

  • Если изначально существовало два стандарта записи мнемоник (система команд была наследована от процессора другого производителя).

Например, процессор наследовал систему команд , расширил ее и поменял мнемоники (и обозначения регистров) на свой лад. Процессоры наследовали систему команд Z80, несколько её урезав. Вместе с тем, Motorola официально вернулась к мнемоникам Intel. И в данный момент половина ассемблеров для Fireball работает с интеловскими мнемониками, а половина с мнемониками Zilog.

Директивы

Программа на ассемблере может содержать директивы: инструкции, не переводящиеся непосредственно в машинные команды, а управляющие работой компилятора. Набор и синтаксис их значительно разнятся и зависят не от аппаратной платформы, а от используемого транслятора (порождая диалекты языков в пределах одного семейства архитектур). В качестве «джентельменского набора» директив можно выделить следующие:

  • определение данных (констант и переменных)
  • управление организацией программы в памяти и параметрами выходного файла
  • задание режима работы компилятора
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий