Электроника для начинающих (чарльз платт) [2012, техническая литература, pdf, ebook (изначально компьютерное)]

Введение

Сегодня электрические устройства помогают управлять АЭС, самолётами, кораблями, готовить пищу, запускать спутники и исследовать дальние миры. Поэтому что такое электроника в нынешнее время должны знать почти все. Тем более что электричество изучают в школах и университетах.

С точки зрения обычного человека электроника это отрасль, которая поставляет полезные приборы для дома и работы, а с точки зрения радиолюбителя — целая наука, которая объединяет в себе успехи математики, физики, химии и производственных технологий. Если тебе интересна электроника, то ты попал на правильный сайт.

На первых порах электроника может показаться тебе крутой, неприступной горой, которая завораживает своими невероятно красивыми снежными пиками. Возможно, ты сейчас думаешь, что только избранные могут осилить изучение электроники. Я считаю иначе. Если кто-то смог её освоить, то и ты сможешь. Надо только разобраться как устроен мир электроники, ухватить общие идеи, а затем постепенно углублять знания.

Если сто лет назад электроники не существовало и информация была в основном об электричестве и электрических машинах, то сегодня электроника представляет огромный мир с множеством направлений. Поэтому можно слегка с грустью, но правдиво заметить, что всё изучить невозможно и хвататься за всё подряд будет плохим решением. 

В начале радиолюбительского пути особенно трудно. Сейчас доступно много информации по электронике и глаза разбегаются с чего начать и с какого края к ней подойти. Я сам был на твоём месте и честно скажу — голова порой кипела. Поэтому я и решил написать путеводиль по электронике для начинающих радиолюбителей. С его помощью я хочу помочь тебе ступить на радиолюбительский путь и войти в мир электроники. 

Почему следует прочитать мой путеводитель?

Традиционно изучение электроники начинается снизу вверх: сначала рассказывается что такое заряд, потом — что такое напряжение и ток, затем описываются резисторы, конденсаторы и катушки индуктивности, потом диоды, транзисторы, операционные усилители, различные виды микросхем и тому подобное. 

В этой книге я поставил всё с ног на голову. И сделал это намеренно. Подумай о том, как ты разбираешься в чем-то новом для себя? Например, увидел необычное устройство, заинтересовался его конструкцией, стал изучать как оно работает, затем как оно устроено, из чего состоит и как связаны между собой его части. Постепенно, шаг за шагом, ты углубляешься и твои знания становтся более глубокими. Ты как будто спускаешься с горы к её подножию, продвигаясь от целого к деталям. Так устроено наше мышление. Сначала мы создаем общую картину мира, затем разбиваем её на части и изучаем каждую часть по отдельности. 

Очевидно, что спускаться с горы проще, чем подниматься на вершину. Поэтому я решил, что вместо изучения резисторов начнём сразу с цифровой техники и микроконтроллеров. Затем посмотрим, как устроены отдельные блоки цифровой техники, спустимся до логических элементов и бинарной арифметики, а затем постепенно перейдём к аналоговой электронике и рассмотрим как на самом деле устроены те же самые логические элементы, но с точки зрения аналоговой электроники.

Затем спустимся ещё на ступеньку ниже и посмотрим как устроены разные электронные компоненты и на основе каких физических принципов они работают. Попутно будем разбирать разные физические принципы и понятия.  Я считаю, что благодаря этому легче понять основные принципы и получить хорошее основание для дальнейшего самостоятельного изучения электроники.

По ходу повествования лишние подробности будут отбрасываться, чтобы сделать акцент на самые важные и основополагающие идеи. На первых порах много деталей только помешают ухватить самые важные идеи. Я надеюсь, что, отбросив лишнее, мне удастся внести ясность, сделать мой рассказ понятным и занимательным. Пусть меня за это простят опытные радиолюбители, профессиональные инженеры и академики «электронных» наук. Эта книга не для вас. Но вы можете помочь мне сделать её лучше, указав на ошибки в тексте.

Если бы у меня была такая книга в начале моего пути — я был бы счастлив. Пусть мой путеводитель превратит твой стартовый путь в электронику в путешествие по скоростному шоссе. Поехали!

Читай дальше: Как работает цифровая электроника

Области электроники

Можно различать следующие области электроники:

  • физика (микромира, полупроводников, электромагнитных волн, магнетизма, электрического тока и др.) — область науки, в которой изучаются процессы, происходящие с заряженными частицами,
  • бытовая электроника — бытовые электронные приборы и устройства, в которых используется электрическое напряжение, электрический ток, электрическое поле или электромагнитные волны. (Например телевизор, мобильный телефон, утюг, лампочка, электроплита,.. и др.).
  • Энергетика — выработка, транспортировка и потребление электроэнергии, электроприборы высокой мощности (например электродвигатель, электрическая лампа, электростанция), электрическая система отопления, линия электропередачи.
  • Микроэлектроника — электронные устройства, в которых в качестве активных элементов используются микросхемы:
    • оптоэлектроника — устройства в которых используются электрический ток и потоки фотонов,
    • аудио-видеотехника — устройства усиления и преобразования звука и видео изображений,
    • цифровая микроэлектроника — устройства на микропроцессорах или логических микросхемах. Например: электронный калькулятор, компьютер, цифровой телевизор, мобильный телефон, принтер, робот, панель управления промышленным оборудованием, средствами транспорта, и другие бытовые и промышленные устройства.

Электронное устройство может включать в себя самые разные материалы и среды, где происходит обработка электрического сигнала с использованием разных физических процессов. Но в любом устройстве обязательно имеется электрическая цепь.

Изучению различных аспектов электроники посвящены многие научные дисциплины технических вузов.

История твердотельной электроники

Термин твердотельная электроника появился в литературе в середине XX века для обозначения устройств на полупроводниковой элементной базе: транзисторах и полупроводниковых диодах, заменивших громоздкие низкоэффективные электровакуумные приборы — радиолампы. Корень «тверд» использован здесь, потому что процесс управления электрическим током происходит в твёрдом теле полупроводника в отличие от вакуума, как это происходило в электронной радиолампе. Позднее, в конце XX века этот термин потерял своё значение и постепенно вышел из употребления, поскольку практически вся электроника нашей цивилизации начала использовать исключительно полупроводниковую твердотельную активную элементную базу.

Миниатюризация устройств

С рождением твердотельной электроники начался революционно быстрый процесс миниатюризации электронных приборов. За несколько десятков лет активные элементы уменьшились в десять миллиардов раз — с нескольких сантиметров электронной радиолампы до нескольких нанометров интегрированного на полупроводниковом чипе транзистора.

Измерительная техника

На протяжении всего развития радиоэлектронных устройств и компонентов, существовала необходимость объективной оценки исправности и параметров как отдельных радиодеталей, так и готовых изделий. Это приводило и приводит к необходимости иметь парк измерительных приборов. Функциональные особенности их весьма разнообразны. При этом, измерительные приборы сами по себе также являются отдельной областью электроники. Точность измерительной техники является важнейшим фактором, от которого напрямую зависит качество разработанной и отлаженной с их помощью радиоаппаратуры

Не менее важно и соблюдение методики измеренией (см. Метрология)

Наиболее точные приборы используются для специальных применений, и недоступны большинству разработчиков. Приборы начального уровня (мультиметр, блок питания лабораторный) нередко изготавливались энтузиастами самостоятельно.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Микроомметр цифровой на базе модулей ADS1115 и TM1637
      7 октября 2020
    • Ампервольтваттметр для блока питания на INA226
      23 сентября 2020
    • Измеритель тока напряжения и мощности на INA226
      11 сентября 2020
    • Программа взаимодействия INA226 с микроконтроллером PIC
      29 июля 2020
    • Миллиомметр цифровой на базе модулей ADS1115 и TM1637
      22 июля 2020
    • Зарядное устройство для автомобильных аккумуляторов — 237 809 просмотров
    • Стабилизатор тока на LM317 — 173 950 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 125 276 просмотров
    • Реверсирование электродвигателей — 102 100 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 733 просмотров
    • Карта сайта — 96 437 просмотров
    • Зарядное для шуруповерта — 88 634 просмотров
    • Самодельный сварочный аппарат — 88 101 просмотров
    • Схема транзистора КТ827 — 82 740 просмотров
    • Регулируемый стабилизатор тока — 81 855 просмотров
    • DC-DC (4)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (17)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (38)
    • Импульсные блоки питания (2)
    • Индикаторы (6)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (17)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Программа начала электроники

Опубликовано в рубрике Бесплатности, закачка программ, компьютер, компьютер с нуля, программы

Здравствуйте, уважаемые читатели моего блога.

Хочу вам представить интересную и простую программу. Эта программа будет полезна не только электрикам, но всем школьникам, которые увлекаются электроникой. До этого мы рассматривали программу «Отличник» для начальных классов.

Вы интерфейс программы видите у себя на экране.

программа начала электроники

Программа очень простая. Имеет при себе достаточный набор инструментов для проведения опытов с электронными компонентами. Есть справочный материал по работе с данной программой, есть справочный материал по электронике и электротехнике.

Давайте посмотрим функционал программы начала электроники.

Сверху на программе имеются 13 кнопок.

1. Загрузить схему из файла на диске. Если вы выполняли работы в программе, а сами схему готовую сохранили на жестком диске компьютера, то нажатие этой кнопки откроет вам готовый ваш файл.

2. Сохраняет ваши схемы на жестком диске компьютера.

3. Очистка монтажной платы от деталей. Нажатие на эту кнопку удаляет все детали, которые имеются у вас на монтажной плате.

4. Открывает инструмент «Мультиметр» Мультиметр включает в себя омметр, амперметр, вольтметр, звуковая прозвонка, тестирование транзисторов. Тестирование транзисторов в данной программе не работает. Можно открыть только два мультиметра.

5. Открывает двухканальный осциллограф. Осциллограф позволяет исследовать формы сигналов на схемах. Можно открыть только один осциллограф.

6. Открывает окно параметры деталей. На окне параметры деталей можно менять характеристик деталей. Двойной щелчок на самой детали на монтажной плате тоже открывает параметры деталей.

7. Окно состояние детали. пишется там в виде отчета.

8. Справочные материалы по электричеству.

9. Открывает лабораторные работы

10. Руководство по работе с программой

11. Обычный калькулятор windows.

12. Сведения об авторах программы

13. Выход из программы начала электроники

Дальше располагаются монтажная плата, на которой будут вестись работы

Набор деталей, с которыми будут проводиться работы

Мусорная урна, куда будут выбрасываться сгоревшие детали.

Давайте, для наглядности соберем простую схему. Схема будет состоять из генератора переменного тока на 220 Вольт, лампочки на 220 Вольт, предохранителя на 1 Ампер и выключателя.

На рисунке собрана простая рабочая схема. Она включена, лампочка горит.

Подпишитесь на мой канал в яндекс дзен —

Более подробную информацию по работе с программой смотрите на видео

Как работает микроконтроллер

Несмотря на всю сложность конструкции настоящего микроконтроллера, рассказать, как он функционирует можно всего одним предложением: «В память микроконтроллера записывается текст программы, МК считывает команды из этой программы и выполняет их», — вот и всё.

 

Конечно, МК не может выполнить какие угодно команды. У него есть базовый набор команд, которые он понимает и знает как выполнить. Комбинируя эти команды, можно получить практически любую программу, с помощью которой устройство будет делать именно то, что от него хотят.

В современном мире микропроцессор (МК тоже микропроцессор, но специализированный) может иметь либо очень много базовых команд, либо очень мало. Это такое условное разделение, для которого даже придумали два термина: CISC и RISC. CISC — это много разных видов команд на все случаи жизни, RISC — это только наиболее необходимые и часто использующиеся команды, т.е. сокращенный набор команд.

Большинство микроконтроллеров исповедуют RISC. Объясняется это тем, что при использовании сокращенного набора команд микроконтроллеры проще и дешевле для производства, их легче и быстрей осваивают разработчики аппаратуры

Между CISC и RISC много различий, но сейчас принципиально важно запомнить только то, что CISC — много команд, RISC — мало команд. Глубже с этими двумя идеями познакомимся как-нибудь в другой раз

Параметры источника питания

Для работы электронная система должна быть подключена к зарядке

Важно отметить: напряжение, подаваемое на клеммы, должно быть в пределах диапазона, приемлемого для системы. Подключение к системе со значением, выше рекомендованного, может привести к необратимой поломке

В случае слишком низкого показателя система будет работать некорректно (или не работать совсем).
 

После подключения потребуется ток, значение которого следует знать (хотя бы приблизительно) перед присоединением. Отдаваемое источником значение должно быть больше потребляемого устройством. Даже если во много раз превышены потребности, при правильном напряжении будет использовано ровно столько, сколько нужно. 

Как обеспечить питание систем

Начинающим рекомендуется питать устройства от различных батареек или аккумуляторов из-за низкого напряжения на клеммах и ограниченной допустимой нагрузке по току, а значит, безопасности и минимальному риску поражения

Главное — 
осторожность, чтобы не замкнуть провода. Короткое замыкание следует устранить как можно скорее, желательно разомкнув цепь

Иначе аккумулятор нагревается, и могут вытечь вредные вещества.

Другой вариант питания устройств — регулируемый магазинный источник питания, изготовленный в соответствии со стандартами безопасности. Использование различных дешевых, неопробованных изобретений может нести большую опасность. Поэтому для обучения лучше выбрать маленькую батарейку на 9 В.
 

Основные твердотельные приборы

Основные твердотельные активные приборы, используемые в электронных устройствах:

  • Диод — проводник с односторонней проводимостью от анода к катоду. Разновидности: туннельный диод, лавинно-пролётный диод, диод Ганна, диод Шоттки и др.;
  • Биполярные транзисторы — транзисторы с двумя физическими p-n-переходами, ток Коллектор-Эмиттер которого управляется током База-Эмиттер;
  • Полевой транзистор — транзистор, ток Исток-Сток которого управляется Напряжением на p-n- или n-p-переходе Затвор-Сток или потенциалом на нём в транзисторах без физического перехода — с затвором, гальванически изолированным от канала Сток-Исток;
  • Диоды с управляемой проводимостью динисторы и тиристоры, используемые как переключатели, светодиоды и фотодиоды используемые как преобразователи э/м излучения в электрические сигналы или электрическую энергию или обратно;
  • Интегральная микросхема — комбинация активных и пассивных твердотельных элементов на одном или нескольких кристаллах в одном корпусе, используемые как модуль, электронная схема в аналоговой и цифровой микроэлектронике.

Примеры использования

Примеры использования твердотельных приборов в электронике:

  • Умножитель напряжения на выпрямительном диоде;
  • Умножитель частоты на нелинейном диоде;
  • Эмиттерный повторитель (напряжения) на биполярном транзисторе;
  • Коллекторный усилитель (мощности) на биполярном транзисторе;
  • Эмулятор индуктивности на интегральных микросхемах, конденсаторах и резисторах;
  • Преобразователь входного сопротивления на полевом или биполярном транзисторе, на интегральной микросхеме операционного усилителя в аналоговой и цифровой микроэлектронике;
  • Генератор электрических сигналов на полевом диоде, диоде Шоттки, транзисторе или интегральной микросхеме в генераторах сигналов переменного тока;
  • Выпрямитель напряжения на выпрямительном диоде в цепях переменного электрического тока в разнообразных устройствах;
  • Источник стабильного напряжения на стабилитроне в стабилизаторах напряжения;
  • Источник стабильного напряжения на выпрямительном диоде в схемах смещения напряжения база-эмиттер биполярного транзистора;
  • Светоизлучающий элемент в осветительном приборе на светодиоде;
  • Светоизлучающий элемент в оптоэлектронике на светодиоде;
  • Светоприёмный элемент в оптоэлектронике на фотодиоде;
  • Светоприёмный элемент в солярных панелях солярных электростанций;
  • Усилитель мощности на биполярном или полевом транзисторе, на интегральной микросхеме, Усилитель мощности в выходных каскадах усилителей мощности сигналов, переменного и постоянного тока;
  • Логический элемент на транзисторе, диодах или на интегральной микросхеме цифровой электроники;
  • Ячейка памяти на одном или нескольких транзисторах в микросхемах памяти;
  • Усилитель высокой частоты на транзисторе;
  • Процессор цифровых сигналов на интегральной микросхеме цифрового микропроцессора;
  • Процессор аналоговых сигналов на тразисторах, интегральной микросхеме аналогового микропроцессора или на операционных усилителях;
  • Периферийные устройства компьютера на интегральных микросхемах или транзисторах;
  • Входной каскад операционного или дифференциального усилителя на транзисторе;
  • Электронный ключ в схемах коммутации сигналов на полевом транзисторе с изолированным затвором;
  • Электронный ключ в схемах с памятью на диоде Шоттки.

Напряжение и ток – понятия

Для работы любого электронного компонента требуется наличие электрического тока. Он создается электрическим потенциалом, то есть «напором» частиц. Самого потенциала недостаточно для течения тока. Нужен также проводник, способный пропустить его через себя. Если проводника нет, то потенциал уходит в воздух, который очень хорошо препятствует распространению тока. Объекты, которые останавливают ток, называются диэлектриками, а позволяющие протекать через них – проводниками.

Помимо проводника, для  течения тока нужна разность потенциалов, возникающая в цепи. Аналогию можно провести с водопроводной трубой. Если с обеих ее сторон подается одинаковый напор, то каким бы сильным он ни был, вода не будет течь. Разность потенциалов называется напряжением. Оно обозначается буквой «U» и измеряется в  вольтах. Сила тока же обозначается «I» и измеряется в амперах.

Важно! По общей договоренности считают, что ток течет от плюса к минусу, но на самом деле это условность. Все дело в том, что отрицательные электроны были открыты уже после этой договоренности

В схемах и на практике никто не вспоминает, откуда и куда течет ток.

Наглядное определение напряжения

Микропроцессорные системы

В книге излагаются вопросы организации функционирования и программирования микропроцессорных средств. В книге излагаются вопросы организации функционирования и программирования микропроцессорных средств. Представлены микропроцессоры общего применения ведущих мировых производителей, процессоры обработки сигналов, а также микроконтроллеры для встроенных приложений: коммуникационные, для задач управления и др. Рассматриваются программные модели процессоров и микроконтроллеров, особенности организации периферийных устройств, средства отладки и проектирования. Приводятся примеры применения и программирования.

Как измерить напряжение

Единицей измерения является вольт, который обозначается буквой V. В первых экспериментах лучше работать с безопасным для здоровья диапазоном от 0 до 9 В. Чтобы проверить, действительно ли батарея, входящая в комплект, составляет 9 В, нужно установить ручку измерителя и выбрать диапазон 20 В. Батарея 9 В измеряется в диапазоне 20 В, но источник питания 21 В относится уже к диапазону 200 В.
 

Не забудьте подключить испытательные щупы (цветные кабели с острыми кончиками) в соответствующие гнезда: черный провод к разъему COM, красный провод к розетке. Затем приложите к батарее два тестовых стержня. Красный — к плюсу, черный — к минусу. 
Щупы держат за пластмассовые части корпуса. Касание металлических наконечников может исказить результаты и, в некоторых случаях, к электро-удару. 

Если читаем со счетчика 9,71 В, все хорошо. Существует большая разница между теоретическими и фактическими значениями и результаты могут отличаться. Новый аккумулятор часто будет иметь более 9 В, но со временем показатель будет падать.
 

Как измерить ток

  1. Установите измеритель на измерение максимального значения сопротивления. Слева на датчике будет 1 (т.е. сопротивление слишком велико для измерения датчиком). Затем коснитесь двух щупов — на экране должно появиться ~ 0 (т.е. измеритель практически не обнаружил сопротивления).
  2. Крепко возьмитесь за датчики пальцами. Сожмите черный зонд левой рукой, а красный зонд — правой. Можно смело касаться обоих концов счетчика (потому что они ни к чему другому не подключены). Подобным образом вы измерите собственное сопротивление. Если установлен максимальный диапазон измерения, должно появиться какое-то большое число на экране измерителя, которое будет уменьшаться по мере разжимания щупов.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку

Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать

Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Закон Ома

Азы электроники для чайников

Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.

Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств

Книга содержит следующие разделы:

  • «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
  • «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
  • «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
  • «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
  • «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.

Обложка книги «Электроника для чайников»

История

Возникновению электроники предшествовало изобретение радио. Поскольку радиопередатчики сразу же нашли применение (в первую очередь на кораблях и в военном деле), для них потребовалась элементная база, созданием и изучением которой и занялась электроника. Элементная база первого поколения была основана на электронных лампах. Соответственно получила развитие вакуумная электроника. Её развитию способствовало также изобретение телевидения и радаров, которые нашли широкое применение во время Второй мировой войны.

Но электронные лампы обладали существенными недостатками. Это прежде всего большие размеры и высокая потребляемая мощность (что было критичным для переносных устройств). Поэтому начала развиваться твердотельная электроника, а в качестве элементной базы стали применять диоды и транзисторы.

Дальнейшее развитие электроники связано с появлением компьютеров. Компьютеры, основанные на транзисторах, отличались большими размерами и потребляемой мощностью, а также низкой надежностью (из-за большого количества деталей). Для решения этих проблем начали применяться микросборки, а затем и микросхемы. Число элементов микросхем постепенно увеличивалось, стали появляться микропроцессоры. В настоящее время развитию электроники способствует появление сотовой связи, а также различных беспроводных устройств, навигаторов, коммуникаторов, планшетов и т. п.

Основными вехами в развитии электроники можно считать:

  • изобретения А. С. Поповым радио (7 мая 1895 года), и начало использования радиоприёмников,
  • изобретение Ли де Форестом лампового триода, первого усилительного элемента,
  • использование Лосевым полупроводникового элемента для усиления и генерации электрических сигналов,
  • развитие твердотельной электроники,
  • использование проводниковых и полупроводниковых элементов (работы Иоффе, Шотки),
  • изобретение в 1947 году транзистора (Уильям Шокли, Джон Бардин и Уолтер Браттейн),
  • создание интегральной микросхемы и последующее развитие микроэлектроники, основной области современной электроники.

Подведу итоги:

  1. Цифровая электроника — верхушка айсберга электроники
  2. Цифровое устройство знает и понимает только числа
  3. Любая информация: сообщение, текст, видео, звук, — могут быть закодированы с помощью двоичных чисел
  4. Микроконтроллер — это микрокомпьютер на одной микросхеме
  5. Любая микропроцессорная система состоит из трёх частей: процессор, память, устройства ввода-вывода
  6. Процессорс состоит из АЛУ и управляющего устройства
  7. АЛУ умеет выполнять арифметические и логические операции с двоичными числами

Оставайся с нами. В следующих статьях я расскажу более подробно как устроена память МК, порты ввода-вывода и АЛУ. А после этого мы  пойдём ещё дальше и в итоге дойдём до аналоговой электроники. 

p.s. Нашёл ошибку? Сообщи мне!

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий