Радиодетали — обозначения на схеме. как читать обозначения радиодеталей на схеме?

Что написано на SMD резисторах

Для поверхностного монтажа на печатных платах обычные виды резисторов применят неудобно. Поэтому были разработаны специальные технологии, позволяющие делать их маленькими — длинной и шириной в несколько миллиметров. Это позволяет использовать площадь плат по максимуму. Но на миниатюрных резисторах даже цветовую маркировку нанести сложно. Поэтому для SMD резисторов разработана своя маркировка — цифро-буквенная. Есть три варианта этой маркировки:

  • три цифры;
  • четыре цифры;
  • три цифры и буква.

Для резисторов SMD со средней погрешностью

Первые два варианта маркировки резисторов — три или четыре цифры — применяют для резисторов со средней погрешностью (допустимое отклонение 5-10%). В них первые две или три цифры — это номинал, последняя определяет множитель. Эта цифра, показывает в какую степень надо возвести 10. Для тех у кого нелады с возведением в степень, множитель прописан на рисунке ниже. Можно также сказать, что последняя цифра показывает, сколько нулей в множителе.

Правило расшифровки кодов номиналов SMD сопротивлений

Принцип нахождения номинала похож на цифро-буквенную маркировку советских резисторов. Первые две или три цифры надо умножить на множитель. Чтобы было понятнее, давайте разберем несколько примеров надписей на SMD сопротивлении. Множитель можно брать из таблицы на рисунке выше.

  • 480 — 48 надо умножить на 1, то есть это резистор на 48 Ом;
  • 313 — 31 надо умножить на 1000, получаем 31000 Ом или 31 кОм;
  • 5442 — 544 надо умножить на 100, итого 54400 Ом или 54,4 кОм;
  • 2115 — 211 с множителем 100 000, получаем 21 100 000 Ом или 21,1 МОм.

Но для маркировки низкоомных резисторов SMD — с сопротивлением менее 100 Ом — используют другую систему. Тут надо определиться с положением точки. Вместо точки ставят латинскую букву R. Пример есть на картинке ниже, разобраться несложно.

Маркировка низкоомных SMD резисторов

Если видите на корпусе резистора букву R, это значит, что номинал небольшой — не более 100 Ом. Иногда встречается вариант с буквой K. Этой буквой зашифровывают множитель 10³ или 1000. Этот тип обозначений создан по аналогии, то есть положение буквы обозначает наличие точки.

Из всех примеров разобрать стоит только K47, да еще, может быть 4K7. Остальные понять несложно. Итак, K47. Так как буква стоит перед цифрами, перед ними ставим запятую, а множитель известен — 1000. Так что получаем: 0,47 * 1000 Ом = 470 Ом. Второй пример: 4K7. Так как буква стоит между цифрами, ставим тут запятую, множитель все тот же — 1000. Получаем 4,7 * 1000 = 4700 Ом или 4,7 кОм.

Расшифровка кодов прецизионных резисторов СМД (повышенной точности)

Для резисторов поверхностного монтажа на печатных платах повышенной точности есть своя маркировка. Описана она в стандарте EIA-96. Применяется для изделий с возможными отклонениями по номиналу не более 1% (0,5%, 0,25%). На поверхности резистора стоят две цифры и одна буква (не R и не K), но значение у них другое:

две цифры обозначают код номинала (обратите внимание, не сам номинал, а его код);
буква — множитель.

Находится номинал в несколько шагов. Сначала по таблице находят код (на картинке ниже), по нему определяют номинал. По второй части таблицы находят множитель (выделен красным). Два найденных числа перемножают и получают номинал.

Таблица расшифровки кодов для SMD резисторов повышенной точности

Давайте разберем несколько примеров того, как определить номинал прецизионных резисторов SMD типа.

  • 01С. Код 01 обозначает 100 Ом, буква С — множитель 100. Итого получаем номинал: 100*100 = 10000 Ом или 10 кОм.
  • 30S. По таблице смотрим код 30. Он соответствует цифре 200. Буква S — множитель 0,01. Считаем номинал: 200 * 0,01 = 2 Ом.
  • 11D. Расшифровка кода 11 — 127, под буквой D зашифрован множитель 1000. Итого получаем 127*1000 = 127 000 Ом или 127 кОм.

В общем, принцип понятен. Ищем код, множитель, перемножаем. В общем, ничего особенно сложного. Простая математика. Если с устным счетом «не очень» помочь может калькулятор. Еще вариант — найти программу, которая расшифровывает коды резисторов.

1987 год

  • Бытовая аппаратура магнитной записи — Справочник — Шевченко В.И.
  • Бытовая приемно-усилительная радиоаппаратура — Справочник — Алексеев Ю.П.
  • Микропроцессоры — справочное пособие для разработчиков судовой РЭА — Гришин Г.Г., Мошков А.А., Ольшанский О.В., Овечкин Ю.А.
  • Приемники оптического излучения — Справочник — Аксененко М.Д., Бараночников М.Л.
  • Справочник — Знакосинтезирующие индикаторы — Вуколов Н.И., Михайлов А.Н.
  • Справочник — Мощные полупроводниковые приборы — Тиристоры — Замятин В.Я., Кондратьев Б.В., Петухов В.М.
  • Справочник — Полупроводниковые БИС запоминающих устройств — Гордонов А.Ю., Дьяков Ю.Н.
  • Справочник — Популярные цифровые микросхемы — Шило В.Л.
  • Справочник по микропроцессорным устройствам — Молчанов А. А., Корнейчук В.И., Тарасенко В.П., Россошинский Д.А.
  • Справочник по схемотехнике для радиолюбителя — Боровский В. П., Костенко В. И., Михайленко В. М., Партала О. Н.
  • Справочник по электротехническим материалам — Том 2 — Корицкий Ю.В., Пасынков В.В., Тареев Б.М.
  • Справочник по электротехническим материалам, Том 2, Корицкий Ю.В., 1987
  • Справочник регулировщика радиоэлектронной аппаратуры — Готра З.Ю., Матвиив В.И., Паскур П.П.

Конденсаторы

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей

Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Основные виды и размеры SMD приборов

Корпуса компонентов для микроэлектроники, имеющие одинаковые номинальные значения, могут отличаться друг от друга габаритами. Их габариты определяются прежде всего по типовому размеру каждого. К примеру: резисторы обозначаются типовыми размеры от «0201» до «2512». Данные 4 цифры в маркировке SMD компонента обозначают кодировку, которая указывает длину и ширину прибора в дюймовом измерении. В размещенной таблице, типовые размеры указаны также и в мм.

Маркировка SMD компонентов — резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) H, мм (дюйм) A, мм Вт
0201 0.6 (0.02) 0.3 (0.01) 0.23 (0.01) 0.13 1/20
0402 1.0 (0.04) 0.5 (0.01) 0.35 (0.014) 0.25 1/16
0603 1.6 (0.06) 0.8 (0.03) 0.45 (0.018) 0.3 1/10
0805 2.0 (0.08) 1.2 (0.05) 0.4 (0.018) 0.4 1/8
1206 3.2 (0.12) 1.6 (0.06) 0.5 (0.022) 0.5 1/4
1210 5.0 (0.12) 2.5 (0.10) 0.55 (0.022) 0.5 1/2
1218 5.0 (0.12) 2.5 (0.18) 0.55 (0.022) 0.5 1
2010 5.0 (0.20) 2.5 (0.10) 0.55 (0.024) 0.5 3/4
2512 6.35 (0.25) 3.2 (0.12) 0.55 (0.024) 0.5 1
Цилиндрические чип-резисторы и диоды
Типоразмер Ø, мм (дюйм) L, мм (дюйм) Вт
0102 1.1 (0.01) 2.2 (0.02) 1/4
0204 1.4 (0.02) 3.6 (0.04) 1/2
0207 2.2 (0.02) 5.8 (0.07) 1

SMD конденсаторы

Конденсаторы выполненные из керамики по размеру одинаковы с резисторами, что касается танталовых конденсаторов, то они определяются по своей, собственной шкале типовых размеров:

Танталовые конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) T, мм (дюйм) B, мм A, мм
A 3.2 (0.126) 1.6 (0.063) 1.6 (0.063) 1.2 0.8
B 3.5 (0.138) 2.8 (0.110) 1.9 (0.075) 2.2 0.8
C 6.0 (0.236) 3.2 (0.126) 2.5 (0.098) 2.2 1.3
D 7.3 (0.287) 4.3 (0.170) 2.8 (0.110) 2.4 1.3
E 7.3 (0.287) 4.3 (0.170) 4.0 (0.158) 2.4 1.2

Катушки индуктивности и дроссели SMD

Индуктивные катушки могут быть выполнены в различных конфигурациях корпуса, но их значение индицируется также, исходя из типоразмеров. Такой принцип маркировки SMD и расшифровки кодовых обозначений, дает возможность значительно упростить монтаж элементов на плате в автоматическом режиме, а радиолюбителю свободнее ориентироваться.

dr>

Моточные компоненты, такие как катушки, трансформаторы и прочие, которые мы в большинстве случаев изготавливаем собственноручно, могут просто не уместится на плате. Поэтому такие изделия, также выпускаются в компактном исполнении, которые можно установить на плату.

Определить какая именно катушка требуется вашему проекту, лучше всего воспользоваться каталогом и там подобрать требующийся вариант по типовому размеру. Типовые размеры, определяют с использованием кодового обозначения маркированного 4 числами (0805). Где значение «08» определяет длину, а число «05» показывает ширину в дюймовом измерении. Фактические габариты такого SMD компонента составят 0.08х0.05 дюйма.

Диоды и стабилитроны в корпусе SMD

Что касается диодов, то они также выпускаются в корпусах как цилиндрической формы так и в виде многогранника. Типовые размеры у этих компонентов задаются идентично индуктивным катушкам, сопротивлениям и конденсаторам.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпуса L* (мм) D* (мм) F* (мм) S* (мм) Примечание
DO-213AA (SOD80) 3.5 1.65 048 0.03 JEDEC
DO-213AB (MELF) 5.0 2.52 0.48 0.03 JEDEC
DO-213AC 3.45 1.4 0.42 JEDEC
ERD03LL 1.6 1.0 0.2 0.05 PANASONIC
ER021L 2.0 1.25 0.3 0.07 PANASONIC
ERSM 5.9 2.2 0.6 0.15 PANASONIC, ГОСТ Р1-11
MELF 5.0 2.5 0.5 0.1 CENTS
SOD80 (miniMELF) 3.5 1.6 0.3 0.075 PHILIPS
SOD80C 3.6 1.52 0.3 0.075 PHILIPS
SOD87 3.5 2.05 0.3 0.075 PHILIPS

Транзисторы в корпусе SMD

СМД транзисторы выполнены в корпусах, которые соответствуют их максимальном мощности. Корпуса этих полупроводниковых элементов символично можно разделить на два вида: SOT и DPAK.

Маркировка SMD компонентов

Маркировка электронных приборов в современной технике уже требует профессиональных знаний, и так просто, с кондачка в ней тяжело разобраться, особенно начинающему радиолюбителю. В сравнении с деталями выпускаемыми при Советском Союзе, где маркировка номинального значения и тип прибора наносилась в текстовом варианте, сейчас это просто мета паяльщика. Не надо было держать под рукой кипы справочной литературы, чтобы определить назначение и параметры того или иного прибора.

Однако, технологические процессы в промышленности не стоят на месте и автоматизация производства определяет свои правила. Именно SMD детали в поверхостном монтаже играют главную роль, а роботу нет никакого дела до маркировки деталей заправленных в машину, что туда поместили, то он и припаяет. Маркировка нужна специалисту, который обслуживает этого робота.

Скачать программу для расшифровки обозначения SMD деталей

Анатомия маркировки

Ошибок не будет, если вы понимаете основную анатомию маркировки полупроводникового компонента. Конечно, всех проблем это не решит, но три составные части маркировки надо знать обязательно.

Обычно в маркировке есть префикс, который предоставляет некоторую базовую информацию об устройстве, но используемые методы кодирования очень просты и никогда не рассказывают вам о конкретном устройстве. Однако при покупке компонентов префикс может быть (и довольно часто) очень важен.

Вторая часть является основной (как бы серийный номер изделия) и имеет три или четыре цифры.

Третья часть – суффикс, предоставляет некоторую дополнительную информацию об устройстве, но он не всегда присутствует, особенно у транзисторов и диодов. Он необходим только при наличии двух или более разных версий устройства.

Опять же, это важно при покупке компонентов, и вы можете легко получить неправильную версию, если у устройства будет неправильный суффикс. Есть много примеров идентичных устройств, которые имеют разные суффиксы

Виды электросхем

Поскольку электроника является довольно обширном понятием, то разумно предположить, что она совмещает в себе много понятий, для каждого из которых присущи определённые характеристики и потребности в схематичном обозначении. Поэтому существует большое количество различных электросхем, мало похожих друг на друга, но обозначающих одно и то же.

Типы электросхем

Схемы делят на несколько видов, среди них есть электрические, их делят на 8 типов, каждый из которых имеет своё обозначение — цифра от 0 до 7. Речь же пойдёт о видах более привычных в понимании простому человеку, которые не имеют профессиональной направленности и предназначены непосредственно для радиотехников-любителей и др.

Принципиальные схемы

Непосредственно применяется в распределительных сетях, поскольку они часто требуют чёткого понимания принципов работы и взаимосвязи электрооборудования. На подобных схемах всегда указываются функциональные узлы цепей, связи между компонентами и радиодетали с помощью условных графических обозначений.

Однолинейная принципиальная схема

Обратите внимание! Такие схемы имеют 2 разновидности (однолинейные или полные) вне зависимости от которых на них содержатся радиодетали с индивидуальными номерами, заводскими названиями и электрическими величинами (сопротивление, потребляемое напряжение, площадь сечения и т. д.). Первый тип представляет из себя чертёж с информацией о первичных сетях электрооборудования, которые также называются силовыми

Первый тип представляет из себя чертёж с информацией о первичных сетях электрооборудования, которые также называются силовыми.

Полная принципиальная схема

Второй, несмотря на своё название, может содержать полную схему вторичных сетей либо отдельный элемент электрической цепи, либо электрические узлы одного изделия. Это определяется в зависимости от дальнейшего предназначения и использования изделия. Оно может быть сложно скомпоновано или огромно, в результате чего возникает необходимость разнесения всего чертежа на несколько частей, вот тогда-то и приходят на помощь вырезки, на которых можно найти более подробную информацию. На данных схемах может указываться состояние электрооборудования или контактов.

Блок-схемы

Данный вид, называемый также структурной схемой, существует не только в электронике, но и в программировании и алгоритмизации, при этом суть их одна и та же — дать общее понятие о структуре и работе того или иного объекта.

Из названия очевидно, что данные схемы в электронике содержат изображение блока электрической схемы. Блок — довольно широкое понятие в электротехнике, но обобщенно его обозначают следующим образом: независимая совокупность неопределённого количества деталей электрической схемы с одной общей определённой функцией.

Блок-схема

Блок-схемы позволяют увидеть общую картину и быстро перейти к дальнейшему подключению, ремонту. На них не встретится каких-то специальных обозначений, поскольку блоки, как правило, в виде кружочков или квадратиков с названиями или аббревиатурами внутри. Также есть стрелки, по которым можно установить правильный порядок чтения схемы.

Важно! Эти схемы могут быть понятны даже человеку без особых познаний в электротехнике

Монтажные

На данном виде схем обозначаются расположение всех элементов электрической цепи, способы их соединения и места подключения поверх схемы здания. Чаще всего за счёт таких схем осуществляется монтаж электропроводки в помещениях, откуда и берётся их название.

Монтажная схема

Как видно из рисунка, данные схемы имеют свои собственные условные обозначения, которые указываются на чертеже и часто приближены к собственному виду тех или иных элементов.

К сведению! На этих схемах указываются все соединительные провода и их способы связи

Также важно соблюдение масштаба и привязка электрооборудования, в частности, розеток, осветительных приборов и т. д. к конкретным комнатам. Поэтому данные электросхемы применимы во время ремонта и эксплуатации помещений

Зачем нужна маркировка

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Маркировка на практике

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся

Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений

Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.

Разнообразные корпуса транзисторов.

Маркировка SMD компонентов

SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.

Код Сопротивление
101 100 Ом
471 470 Ом
102 1 кОм
122 1.2 кОм
103 10 кОм
123 12 кОм
104 100 кОм
124 120 кОм
474 470 кОм

Маркировка импортных SMD

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

Что такое SMD

Расшифровка smd – Surface Mounted Device. Это означает «устройство поверхностного монтажа». Если более ранние типы радиодеталей требовали для размещения на плате проделывания очень большого числа отверстий и припаивания проволокой, то smd чип размещается на поверхность области контакта и спаивается с той же стороны (без проволоки). Использование таких деталей обладает рядом преимуществ:

  • отсутствует необходимость в проделывании большого количества дырочек и в обрезании выводов;
  • технология позволяет сделать элементы более компактными, поместить на плату большее их число (к тому же есть возможность размещать их на обеих сторонах платы), таким образом, менее крупногабаритными становятся и сами изделия;
  • сборка плат реализуется роботами, что освобождает людей от рутинного труда;
  • уменьшение искажающих работу устройства явлений, связанных с паразитной индуктивностью (у данных компонентов она небольшая благодаря их размерам), это улучшает качество работы с высокочастотными или трудноуловимыми сигналами;
  • за счет уменьшения числа технологических операций снижается стоимость готовой продукции.

В качестве минуса можно обозначить только то, что для автоматизации сборки плат потребуется приобретение специального оборудования.

Справочник «Бронетехника» (МедиаХауз) [2005, Справочник, Обычный текст, OCR без ошибок]

Формат: HTMLГод выпуска: 2005Жанр: СправочникИздательство: МедиаХаузЯзык: РусскийОписание: Сведения о бронетанковой технике и вооружении, стоявшими и стоящими на вооружении России и Советского Союза. Рассказывается о танках, самоходных установках, бронеавтомобилях и боевых машинах. Предлагаются данные по танковым двигателям и бронетанковому вооружению. В справочнике удобная навигация, несколько видов классификации (по типам техники, по назначению, по массе, и т.д.).Доп. информация: Справочник открывается файлом index.html Раздача непостоянна (не имею технической возможности круглосуточно …

На один меньше

Простые полупроводники американских производителей маркируются по системе JEDEC (Joint Electron Devices Engineering Council) и имеют префикс, состоящий из цифры, за которой следует буква N . Цифра на единицу меньше количества выводов, которое имеет устройство, что на практике означает 1 — для диодов и стабилитронов (т.е. два вывода), «2» для обычных транзисторов и «3» или более для специальных устройств, таких как двухзатворные МОП-транзисторы и прочее.

Таким образом, 1N4148 является устройством, которое имеет два вывода, что обычно означает диод. Это на самом деле небольшой диод, но эта информация не отображается в маркировке типа JEDEC, которая получается менее информативна, чем европейская Pro Electron.

Сейчас не часто встречается маркировка японской системы JIS (Японские промышленные стандарты), но первая цифра в ней снова является числом, которое на один меньше, чем количество выводов у элемента. Затем следуют две буквы, которые идентифицируют общий тип устройства:

Маркировка Тип устройства
SA Высокочастотный PNP транзистор
SB Высокочастотный NPN транзистор
SC PNP транзистор для аудио
SD NPN транзистор для аудио
SE Диод
SJ P-канальный полевой транзистор (в том числе и MOSFET)
SK N-полевой транзистор (в том числе и MOSFET)
SR Фильтр

Как нетрудно заметить, для обычных типов транзисторов первые две цифры всегда получаются «2S» и, возможно, они немного бесполезны, поэтому эти две цифры часто опускаются при маркировке элементов.

Постоянные конденсаторы

В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Активные SMD компоненты. Маркировка, характеристики, замена

Активные SMD компоненты. Маркировка, характеристики, замена. В справочнике приводится кодовая маркировка (SMD-коды) для более чем 33 тысячи активных электронных компонентов (тиристоров, биполярных и полевых транзисторов, интегральных микросхем, а также диодов).SMD-коды разделены по типам корпусов и расположены в таблицах в алфавитно-цифровом порядке. Представлены логотипы и адреса фирм-производителей электронных компонентов, схематические рисунки корпусов и назначение выводов (цоколевка) для дискретных полупроводниковых компонентов и большинства интегральных микросхем, типовые схемы подключения для большинства интегральных микросхем.

Производитель

Большинство электронных компонентов маркируются согласно перечисленным стандартным методам. Но бывают и исключения. (рис.1).

Здесь префикс TIP этого силового транзистора указывает, что он является мощным транзистором в пластиковом корпусе от Texas Instruments. Однако впереди производитель нанёс логотип MOSPEC, поэтому префикс стал вторым элементом маркировки.

Такое часто встречается в маркировке интегральных микросхем, где к стандартной маркировке типа производитель добавляет свою кодировку.

Рис.2. Эта интегральная схема имеет обозначение «LM» в качестве префикса, что указывает на то, что это изделие фирмы National Semiconductor.

Как несколько примеров: префиксы «CA» и «MC» используются соответственно фирмы KCA и Motorola. Из-за того, что один и тоже элемент может выпускаться разными производителями и маркироваться по своему, возникают трудности с идентификацией элементов.

Конечно, наличие на рынке нескольких производителей порождает конкуренцию, что, как следствие, снижает цены на радиоэлементы. Для нас это хорошо. С другой стороны, каждый производитель вносит что-то своё в маркировку элементов, тем самым затрудняет нам их идентификацию.

При просмотре каталога интегральных микросхем, вероятно, лучше всего игнорировать префикс и сосредоточиться на двух других элементах маркировки. Тем более, что часто поставщики компонентов не гарантируют поставку устройств от конкретных производителей. Если вы заказываете (скажем) MC1458CP. но вам прислали СА1458Е. или наоборот, нет повода беспокоиться. Обе микросхемы являются 1458 — двойными операционными усилителями, и нет никакой практической разницы между ними. MC1458CP производится Motorola или Texas Instruments, а СА1458Е – фирмой RCA.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Применение интегральных микросхем памяти

Применение интегральных микросхем памяти. Рассматриваются два типа интегральных запоминающих устройств (ЗУ): ЗУ на больших интегральных микросхемах (БИС) и ЗУ на цилиндрических магнитных доменах (ЦМД). Приводятся классификация, параметры и принципы построения БИС ЗУ. Описываются особенности организации систем памяти на БИС и вопросы конструирования различных типов ЗУ. Рассматриваются также физика работы, основные параметры, типы микросхем, организация памяти на ЦМД. Даются рекомендации по построению практических схем ЗУ, приводятся примеры их расчета и использования в различных устройствах.

«A7» SMD маркировка

Радиоэлементы с маркировкой на корпусе A7

Код SMD Корпус Наименование Описание Даташит
A7 SOT-23 BAV99 Переключающие диоды Скачать
A7 SOT-323 BAV99WT1 Переключающие диоды Скачать
A7 SOT-523 MMBD4448HTC Переключающие диоды Скачать
A7 SOT-886 NC7WZ04L6X Инверторы Скачать
A7 X2SON-4 1×1 TPS3831G33DQNR Детектор напряжения Скачать
A7 * SOT-23 BAV99LT1G Диоды Скачать
A7* SOT-143 HSMS-2807 Ограничительные диоды Шоттки Скачать
A7* VDFN-8 2×2 RT9011-GSPQV Стабилизатор напряжения Скачать
A7** SOT-23 ST3407S23RG Полевой транзистор с P-каналом Скачать
A7** SOT-25 Si9183DT-33-T1 Стабилизатор напряжения Скачать
A7- SOT-343R BFG310W/XR NPN транзистор Скачать
A7- SOT-89 RT9161-40PX Стабилизатор напряжения Скачать
A7-** VDFN-10 3×3 RT9014-GMPQV Стабилизатор напряжения Скачать
A7-** SOT-323 RT9818A-25PU3 Детектор напряжения Скачать
A7-*** SOT-26 RT9011-GMPJ6 Стабилизатор напряжения Скачать
A7-*** SOT-353 RT9198-28PU5 Стабилизатор напряжения Скачать
A7-*** SOT-343 RT9818A-23PY Детектор напряжения Скачать
A7122A SOT-25 A7122AE5R Понижающий преобразователь Скачать
A7122A SOT-26 A7122AE6R Понижающий преобразователь Скачать
A7221 SOT-26 A7221TE6R Понижающий преобразователь Скачать
A7221A SOT-26 A7221AE6R Понижающий преобразователь Скачать
A7221B SOT-26 A7221BE6R Понижающий преобразователь Скачать
A7231 SOT-26 A7231TE6R Понижающий преобразователь Скачать
A7312 SOT-26 A7312E6R Понижающий преобразователь Скачать
A74 SOT-353 LMV931MG Операционный усилитель Скачать
A7404 SOT-26 A7404E6R Понижающий преобразователь Скачать
A7406 SOT-26 A7406E6R Понижающий преобразователь Скачать
A7407 SOT-26 A7407E6R Понижающий преобразователь Скачать
A75 SOT-26 OPA373AIDBV Операционный усилитель Скачать
A7525 SOT-26 A7525E6R-ADJ Повышающий преобразователь Скачать
A75A SOT-26 LMV715MF Операционный усилитель Скачать
A76 SOT-26 OPA374AIDBV Операционный усилитель Скачать
A78 SOT-363 LMV341MG Операционный усилитель Скачать
A785J SO-16 ACPL-785J Изолирующий усилитель Скачать
A79A SOT-25 LMV931MF Операционный усилитель Скачать
A7p SOT-23 BAV99 Переключающие диоды Скачать
A7p SOT-323 BAV99W Переключающие диоды Скачать
A7p SOT-343R BFG310W/XR NPN транзистор Скачать
A7s SOT-23 BAV99 Переключающие диоды Скачать
A7s SOT-363 BAV99S Переключающие диоды Скачать
A7s SOT-26 BAV99U Переключающие диоды Скачать
A7s SOT-323 BAV99W Переключающие диоды Скачать
A7t SOT-23 BAV99 Переключающие диоды Скачать
A7t SOT-323 BAV99W Переключающие диоды Скачать
A7t SOT-343R BFG310W/XR NPN транзистор Скачать
A7W SOT-23 BAV99 Переключающие диоды Скачать
A7W SOT-323 BAV99W Переключающие диоды Скачать
A7W SOT-343R BFG310W/XR NPN транзистор Скачать
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий